Axiomatization of the index of pointedness for closed convex cones
نویسندگان
چکیده
LetC(H) denote the class of closed convex cones in a Hilbert space H . One possible way of measuring the degree of pointedness of a cone K is by evaluating the distance from K to the set of all nonpointed cones. This approach has been explored in detail in a previous work of ours. We now go beyond this particular choice and set up an axiomatic background for addressing this issue. We define an index of pointedness over H as being a function f : C(H) → R satisfying a certain number of axioms. The number f (K ) is intended, of course, to measure the degree of pointedness of the cone K . Although several important examples are discussed to illustrate the theory in action, the emphasis of this work lies in the general properties that can be derived directly from the axiomatic model. Mathematical subject classification: 47L07, 52A20.
منابع مشابه
Bishop-Phelps type Theorem for Normed Cones
In this paper the notion of support points of convex sets in normed cones is introduced and it is shown that in a continuous normed cone, under the appropriate conditions, the set of support points of a bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.
متن کاملComputing the radius of pointedness of a convex cone
Let Ξ(H) denote the set of all nonzero closed convex cones in a finite dimensional Hilbert space H. Consider this set equipped with the bounded Pompeiu-Hausdorff metric δ. The collection of all pointed cones forms an open set in the metric space (Ξ(H), δ). One possible way of measuring the degree of pointedness of a cone K is by evaluating the distance from K to the set of all nonpointed cones....
متن کاملBornological Completion of Locally Convex Cones
In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.
متن کاملOn Polar Cones and Differentiability in Reflexive Banach Spaces
Let $X$ be a Banach space, $Csubset X$ be a closed convex set included in a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set $C$, so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...
متن کاملAntipodality in convex cones and distance to unpointedness
We provide a complete answer to the problem which consists in finding an unpointed convex cone lying at minimal bounded Pompeiu–Hausdorff distance from a pointed one. We give also a simple and useful characterization of the radius of pointedness of a convex cone. A corresponding characterization for the radius of solidity of a convex cone is then derived by using a duality argument. c © 2007 El...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005